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Abstract—Graph neural networks (GNNs) have shown great power in modeling graph structured data. However, similar to other
machine learning models, GNNs may make biased predictions w.r.t protected sensitive attributes, e.g., skin color and gender. This is
because machine learning algorithms including GNNs are trained to reflect the distribution of the training data which often contains
historical bias towards sensitive attributes. In addition, we empirically show that the discrimination in GNNs can be magnified by graph
structures and the message-passing mechanism of GNNs. As a result, the applications of GNNs in high-stake domains such as crime
rate prediction would be largely limited. Though extensive studies of fair classification have been conducted on independently and
identically distributed (i.i.d) data, methods to address the problem of discrimination on non-i.i.d data are rather limited. Generally,
learning fair models require abundant sensitive attributes to regularize the model. However, for many graphs such as social networks,
users are reluctant to share sensitive attributes. Thus, only limited sensitive attributes are available for fair GNN training in practice.
Moreover, directly collecting and applying the sensitive attributes in fair model training may cause privacy issues, because the sensitive
information can be leaked in data breach or attacks on the trained model. Therefore, we study a novel and important problem of
learning fair GNNs with limited and private sensitive attribute information. In an attempt to address these problems, FairGNN is
proposed to eliminate the bias of GNNs whilst maintaining high node classification accuracy by leveraging graph structures and limited
sensitive information. We further extend FairGNN to NT-FairGNN which can achieve both fairness and privacy on sensitive attributes by
using limited and private sensitive attributes. Theoretical analysis and extensive experiments on real-world datasets demonstrate the
effectiveness of FairGNN and NT-FairGNN in achieving fair and high-accurate classification.
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1 INTRODUCTION

G Raph neural networks (GNNs) [1], [2], [3] have
achieved remarkable performance on various domains

such as knowledge graph [4], social media mining [5], and
recommendation system [6], [7]. Generally, message-passing
process is adopted in GNNs [2], [5], where information from
neighbors is aggregated for every node in each layer. This
process enriches node representations, and preserves both
node feature characteristics and topological structures.

Despite the success in modeling graph data, GNNs
trained on graphs may inherit the societal bias in data,
which limits the adoption of GNNs in many real-world
applications. First, extensive studies [8], [9], [10] have re-
vealed that historical data may include patterns of previous
discrimination and societal bias. Machine learning models
trained on such data can inherit the bias on sensitive at-
tributes such as ages, genders, skin color, and regions [8],
[9], which implies that GNNs could also exhibit the bias.
Second, the topology of graphs and the message-passing of
GNNs could magnify the bias. Generally, in graphs such
as social networks, nodes of similar sensitive attributes are
more likely to connect to each other than nodes of different
sensitive attributes [11], [12]. For example, young people
tend to build friendship with people of similar age on the so-
cial network [11]. This makes the aggregation of neighbors’
features in GNN have similar representations for nodes of
similar sensitive information while different representations
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for nodes of different sensitive features, leading to severe
bias in decision making, i.e., the predictions are highly
correlated with the sensitive attributes of the nodes. Our
preliminary experiments in Sec. 3.5 indicate that GNNs have
a larger bias due to the adoption of graph structure than
models that only use node attributes, which verifies our
intuition. The bias would largely limit the wide adoption of
GNNs in domains such as ranking of job applicants [13] and
crime rate prediction [14]. Thus, it is important to investigate
fair graph neural networks.

However, developing fair GNNs is a non-trivial task.
First, to achieve fairness, we need to obtain abundant nodes
with known sensitive attributes so that we can either revise
the data or regularize the model; whereas people are unwill-
ing to share their sensitive information in the real-world,
and resulting in inadequate nodes with sensitive attributes
known for fair model learning. For example, only 14% teen
users public their complete profiles on Facebook [15]. The
lacking of sensitive information challenges many existing
work on fair models [9], [10], [16], [17]. Second, directly
collecting the users’ sensitive attributes and applying them
for fair machine learning models may lead to a privacy
issue. The collected sensitive attributes have a risk of data
breach during the storage. For instance, the personal data of
more than half a billion Facebook users was leaked online
for free in a hacker forum in 20211. The user sensitive
attributes can also be leaked from the trained models which
utilize the ground-truth sensitive attributes, because various
attack methods [18], [19] can infer the training dataset infor-

1. https://www.bbc.com/news/technology-56745734
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mation from the trained models. One of the most promis-
ing solutions is to obtain private sensitive attributes with
Differential Privacy (DP) [20] which gives strong privacy
guarantees. Though some efforts [21], [22] have been con-
ducted for fairness on private demographic data, works that
consider limited and private sensitive attributes are rather
limited. Third, though extensive efforts have been made
to establish fair models such as by revising features [23],
disentanglement [10], adversarial debiasing [9] and fairness
constraints [24], [25], they are overwhelmingly dedicated to
independently and identically distributed (i.i.d) data, which
cannot be directly applied on graph data for the absence of
simultaneous consideration of the bias from node attributes
and graph structures.

Therefore, in this paper, we study a novel problem of
learning fair graph neural networks with limited private
sensitive information. In essence, we need to solve three
challenges: (i) how to overcome the shortage of sensitive
attributes for eliminating discrimination; (ii) how to protect
the privacy of the users on sensitive attributes; and (iii) how
to ensure the fairness of the GNN classifier. In an attempt to
address these challenges, we propose a novel framework
named as FairGNN for fair node classification with lim-
ited sensitive attributes. We further extend the FairGNN
to achieve fairness with limited private sensitive attributes
to protect the privacy of users, obtaining a framework
named NT-FairGNN . To alleviate the shortage of sensi-
tive attributes, FairGNN and NT-FairGNN adopt a GNN
sensitive attribute estimator to predict sensitive attributes
for fair classification. Inspired by existing works of fair
classification on i.i.d data with adversarial learning [9], [26],
[27], we deploy an adversary to ensure the GNN classifier
make predictions independent with the estimated sensitive
attributes. To further stabilize the training process and per-
formance in fairness, we introduce a fairness constraint to
make the predictions invariant with the estimated sensitive
attributes. Since the sensitive attribute estimator is trained
on limited and private sensitive attributes, the predicted
sensitive attributes are noisy. We theoretically show that our
framework can learn fair classifier with the noisy estimated
sensitive attributes. Our main contributions are:

• We study novel problems of fair graph neutral networks
learning with limited/private sensitive information;

• We propose a new framework, FairGNN, which can learn
fair and high accurate classifier on graphs with limited
sensitive attributes. We further extend FairGNN to give
fair prediction whilst protecting the privacy of user sensi-
tive attributes; and

• We theoretically show that the proposed framework can
achieve fairness with estimated noisy sensitive attributes;

• Extensive experiments on different datasets demonstrate
the effectiveness of our methods in eliminating discrimi-
nation while keeping high accuracy of GNNs.

2 RELATED WORK

In this section, we review related work including graph neu-
ral networks, fairness in machine learning and differential
privacy in deep learning.

2.1 Graph Neural Networks

Graph neural networks (GNNs), which generalize neural
networks for graph structured data, have shown great
success for various applications [4], [5], [6]. Generally,
GNNs can be categorized into two categories, i.e., spectral-
based [1], [2], [28], [29] and spatial-based [3], [5]. Spectral-
based GNNs define graph convolution based on spectral
graph theory, which is first explored by Bruna et al. [1].
Since then, more spectral-based methods are developed for
further improvements and extensions [2], [28], [29]. Graph
Convolutional Network (GCN) [2] is a particularly popular
method which simplifies the graph convolution by first-
order approximation. For spatial-based graph convolution,
it directly updates the node representation by aggregating
the representations of its neighbors [5], [30]. For instance,
spatial graph convolution that incorporates the attention
mechanism is applied in GAT [3] to facilitate the information
aggregation. GraphSAGE [5] adopts a neighbor sampling
method in the training of GNN to solve the scalability
issue of GCN [5]. Graph Isomorphism Network (GIN) [31]
is proposed to learn more powerful representations of the
graph structures. Recently, to incorporate long range neigh-
bors in the message-passing of GNNs, deep graph neural
networks [32], [33], [34], [35] has been investigated. For
example, initial residual and identity mapping are used
in [32] to extend the GCN to overcome the over-smoothing
issue of deep GNNs. In [35], DropEdge is applied as data
augmenter and a message passing reducer to reduces the
convergence speed of over-smoothing.

The essential idea of GNNs is to propagate the infor-
mation of nodes through the graph to get better represen-
tations. However, people tend to build relationships with
those sharing the same sensitive attributes. Then, represen-
tations in GNNs are nearly propagated within the subgroup,
which highly increases the risk of discrimination towards
sensitive attributes. Despite the risk of discrimination in
GNNs, the work on addressing this issue is rather limited.
Therefore, we study the novel problem of learning fair
GNNs to eliminate the potential discrimination.

2.2 Fairness in Machine Learning

Many works have been conducted to deal with the bias in
the training data to achieve fairness in machine learning [8],
[9], [16], [23], [36]. Based on which stage of the machine
learning training process is revised, algorithms could be
split into three categories: the pre-processing approaches,
the in-processing approaches, and the post-processing ap-
proaches. The pre-processing approaches are applied before
training machine learning models. They could reduce the
bias by modifying the training data through correcting
labels [23], revising attributes of data [37], generating non-
discriminatory labeled data [38], [39], [40], and obtain-
ing fair data representations [9], [10], [16], [41]. The in-
processing approaches are designed to revise the training of
the state-of-the-art models. Typically the machine learning
models are trained with additional regularization terms or a
new objective function [8], [24], [26], [42]. Finally, the post-
processing approaches directly change the predictive labels
to ensure fairness [36], [43]. The majority of the aforemen-
tioned approaches are for i.i.d data while fair models on



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

graphs are rather limited. Recently, several works explore
the learning of fair graph embeddings for recommendation
[12], [44]. Fairwalk [12] modifies the random walk proce-
dure of node2vec [45] to obtain a more diverse network
neighborhood representations. The sensitive attributes of all
the nodes are required in the sampling procedure of Fair-
Walk. Bose et al. [44] propose to add discriminators to elim-
inate the sensitive information in the graph embeddings.
Similar to Fairwalk, the training process of discriminators
also needs the sensitive attributes of all the nodes.

Our work is inherently different from existing works:
(i) we focus on learning fair GNNs for node classification
instead of fair graph embeddings; (ii) we address the prob-
lem that only a limited number of nodes are provided with
privacy-preserving sensitive attributes in practice.

2.3 Differential Privacy in Deep Learning
Differential Privacy (DP) [20], [46] is a popular approach
to provide privacy guarantee of training data. The key
idea of DP is to add noise to datasets or model training
to prevent the individual information leakage. Based on
the assumption about the curator, DP can be categorized
into centralized DP [46] and local DP [20]. Centralized DP
assumes a trusted curator is available to apply calibrated
noise to produce DP; while local DP assumes the curator is
untrusted and perturbs users’ data locally. Recently, various
differential-privacy preserving deep learning methods [47],
[48], [49], [50], [51] are investigated to protect the training
data privacy. For instance, NoisySGD [48] add noises to the
gradients during model training so the trained model pa-
rameters will not leak training data with certain guarantee.
To preserve the privacy of users sensitive information, DP
is also employed in fair machine learning models [21], [22],
[52], [53] which requires sensitive information of users for
discrimination elimination. For example, in [22], sensitive
attributes are perturbed to obtain private sensitive attributes
to meet local DP before a non-discriminatory learner is
adapted to work with privatized protected attributes [22].

However, the aforementioned works are dedicated to
i.i.d data, which may not be directly applicable to fair graph
neural networks. Moreover, current fair models mostly re-
quires plenty of private sensitive attributes, which is not re-
alistic for real-world graphs. Therefore, we propose a novel
framework NT-FariGNN to achieve fairness in GNN while
maintaining the privacy of users’ sensitive information.

3 PRELIMINARIES ANALYSIS

In this section, we conduct preliminary analysis on real-
world datasets to show that GNNs could exhibit more
severe bias due to the graph structure and message-passing.

3.1 Notations
We use G = (V, E ,X) to denote an attributed graph, where
V = {v1, ..., vN} is the set of N nodes, E ⊆ V × V is the set
of edges, and X = {x1, ...,xN} is the set of node features.
A ∈ RN×N is the adjacency matrix of the graph G, where
Aij = 1 if nodes vi and vj are connected; otherwise, Aij =
0. In the semi-supervised setting, part of nodes v ∈ VL are
provided with labels yv ∈ Y , where VL ⊆ V denotes nodes

TABLE 1: The statistics of datasets.

Dataset Pokec-z Pokec-n NBA
# of nodes 67,797 66,569 403
# of node attributes 59 59 39
# of edges 882,765 729,129 16,570
Size of VL 500 500 100
Size of VS 200 200 50
# of inter-group edges 39,804 31,515 4,401
# of intra-group edges 842,961 697,614 12,169

with labels, and Y is the set of labels. Sensitive attributes of
training nodes are required to achieve fairness of machine
learning algorithms. In our setting, only a small set of nodes
VS ⊂ V are provided with the sensitive attribute s ∈ {0, 1}.
The set of provided sensitive attributes is denoted by S .
Note that VL and VS can be totally different.

3.2 Datasets

For the purpose of this study, we collect and sample datasets
from Pokec and NBA. The details are described as below.

Pokec [54]: Pokec is the most popular social network
in Slovakia, which is very similar to Facebook and Twitter.
This dataset contains anonymized data of the whole social
network in 2012. User profiles of Pokec contain gender,
age, hobbies, interest, education, working field and etc. The
original Pokec dataset contains millions of users. Based on
the provinces that users belong to, we sampled two datasets
named as: Pokec-z and Pokec-n. Both Pokec-z and Pokec-
n consist of users belonging to two major regions of the
corresponding provinces. We treat the region as the sensitive
attribute. The classification task is to predict the working
field of the users.

NBA: This is extended from a Kaggle dataset 2 con-
taining around 400 NBA basketball players. The perfor-
mance statistics of players in the 2016-2017 season and other
various information e.g., nationality, age, and salary are
provided. To obtain the graph that links the NBA players
together, we collect the relationships of the NBA basketball
players on Twitter with its official crawling API 3. We
binarize the nationality to two categories, i.e., U.S. players
and oversea players, which is used as sensitive attribute.
The classification task is to predict whether the salary of the
player is over median.

For all the datasets, we eliminate nodes without any
links with others. We randomly sample labels and sensitive
attributes separately to get VL and VS . We randomly sample
25% and 50% of nodes containing both sensitive attributes
and labels in Pokec-z, Pokec-n and NBA as validation sets
and test sets. Note that the validation sets and test sets have
no overlap with VL and VS . The key statistics of the datasets
are given in Table 1. Apart from the basic statistics, we also
report the ratio of the majority and minority group and
the number of edges linking the same group and different
groups. It is evident from the table that: (i) skew exists in
sensitive attributes; (ii) most of relationships are between
users who share the same sensitive attribute.

2. https://www.kaggle.com/noahgift/social-power-nba
3. https://developer.twitter.com/en
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TABLE 2: Results of models w/ and w/o utilizing graph.
Dataset Metrics MLP MLP-e GCN GAT

Pokec-z

ACC (%) 65.3 ±0.5 68.6 ±0.3 70.2 ±0.1 70.4 ±0.1
AUC (%) 71.3 ±0.3 74.8 ±0.3 77.2 ±0.1 76.7 ±0.1
∆SP (%) 3.8 ±1.3 6.9 ±1.0 9.9 ±1.1 9.1 ±0.9
∆EO (%) 2.2 ±0.7 4.0 ±1.5 9.1 ±0.6 8.4 ±0.6

Pokec-n

ACC (%) 63.1 ±0.4 66.3 ±0.6 70.5 ±0.2 70.3 ±0.1
AUC (%) 68.2 ±0.3 72.4 ±0.6 75.1 ±0.2 75.1 ±0.2
∆SP (%) 3.3 ±0.6 8.7 ±1.0 9.6 ±0.9 9.4 ±0.7
∆EO (%) 7.1 ±0.9 9.9 ±0.6 12.8 ±1.3 12.0 ±1.5

NBA

ACC (%) 63.6 ±0.9 66.1 ±1.1 71.2 ±0.5 71.9 ±1.1
AUC (%) 73.5 ±0.3 74.4 ±1.2 78.3 ±0.3 78.2 ±0.6
∆SP (%) 6.0 ±1.5 10.9 ±1.9 7.9 ±1.3 10.2 ±2.5
∆EO (%) 6.1 ±1.8 8.8 ±3.0 17.8 ±2.6 15.9 ±4.0

3.3 Preliminaries of Graph Neural Networks

Graph neural networks utilize the node attributes and edges
to learn a representation hv of the node v ∈ V . The goal of
learning representation in node classification is to predict
the node v’s label as yv = f(hv) . Generally, GNNs adopt
neighborhood aggregation approaches, which update the
representations of a node v with the representations of v’s
neighborhood nodes. The representations of v after k layers’
aggregation could capture the structural information of the
k-hop subgraph centered at v. The updating process of the
k-th layer in GNN could be formulated as:

a(k)v = AGGREGATE(k−1)({h(k−1)
u : u ∈ N (v)}),

h(k)
v = COMBINE(k)(h(k−1)

v ,a(k)),
(1)

where h
(k)
v is the representation vector of the node v ∈ V at

k-th layer and N (v) is the set of neighbors of v.

3.4 Fairness Evaluation Metrics

In this subsection, we present two definitions of fairness
for the binary label y ∈ {0, 1} and the sensitive attribute
s ∈ {0, 1}. ŷ ∈ {0, 1} denotes the prediction of the classifier
η: x→ y.

Definition 1. (Statistical Parity [8]). Statistical parity requires
the predictions to be independent with the sensitive attribute s,
i.e., ŷ⊥s. It could be formally written as:

P (ŷ|s = 0) = P (ŷ|s = 1). (2)

Definition 2. (Equal Opportunity [36]). Equal opportunity
requires the probability of an instance in a positive class being
assigned to a positive outcome should be equal for both subgroup
members. The property of equal opportunity is defined as:

P (ŷ = 1|y = 1, s = 0) = P (ŷ = 1|y = 1, s = 1). (3)

The equal opportunity expects the classifier to give equal true
positive rates across the subgroups.

Following [9], [17], we adopt the following metrics to
measure statistical parity and equal opportunity:

∆SP = |P (ŷ = 1|s = 0)− P (ŷ = 1|s = 1)|, (4)

∆EO = |P (ŷ = 1|y = 1, s = 0)− P (ŷ = 1|y = 1, s = 1)|,
(5)

where the probabilities are evaluated on the test set.

3.5 Discrimination in Graph Neural Networks
Various machine learning algorithms such as logistic re-
gression [24], SVM [24], and MLP [41] have been reported
to have discrimination. The features of the instances may
contain proxy variables of the sensitive attribute. It could
result in biased predictions. For GNNs, edges in graph
can bring linking bias, i.e., the misrepresentation due to
the connections of users [13]. It has been proven that the
embeddings of nodes within the connected component will
be closer after one aggregation in GCN [55], [56]. Since most
of edges are intra-group as Table 1 shows, embeddings of
nodes sharing the same sensitive attribute will be closer
after k-layer information aggregation. As a result, represen-
tations of the nodes may exhibit bias. Intuitively, similar
discrimination also exists in other GNNs that aggregate
information of neighborhoods.

To empirically demonstrate the existence of discrimina-
tion in GNNs, we make comparisons between the following
models:
• MLP: A multi-layer perception model trained on VL.
• MLP-e: A MLP model utilizes graph structure by adding

embeddings learned by deepwalk to the features.
• GCN [2]: A representative spectral graph neural network.
• GAT [3]: A spatial GNN which utilizes attention to assign

higher weights to more important edges.
For each model, we run the experiment 5 times. The classi-
fication results and discrimination scores on the test set are
reported in Table 2. From the table, we observe that (i) both
performance of GCN and GAT are much better than MLP,
which is as expected because GCN and GAT adopt both
node attributes and the graph structure for classification;
(ii) Compared with MLP, models utilizing graph structure,
i.e., GCN and GAT, perform significantly worse in terms of
fairness, which verifies that bias exists in GNNs and the graph
structure could further aggravate the discrimination.

4 PROBLEM DEFINITION

Our preliminary analysis verifies that GNNs have severe
bias issue. Thus, it is important to develop fair GNNs. In
this section, we first present the formal problem definition
of learning fair GNN with limited sensitive attributes. Next,
we give the problem definition of training fair GNN with
limited and private sensitive attributes to simultaneously
give fair node predictions and protect the privacy of users’
sensitive attributes.

4.1 Fair GNN with Limited Sensitive Attributes
Following existing work of fair models [9], [17], [37], [38],
we focus on the binary class and binary sensitive attribute
setting, i.e., both y and s can either be 0 or 1. We leave the
extension to multi-class and multi-sensitive attribute setting
as a future work. With the notations given in Section 3.1,
the problem of learning fair GNN with limited sensitive
attributes is formally defined as:

Problem 1. Given a graph G = (V, E ,X), small labeled node
set VL ∈ V with the corresponding labels in Y , and a small set of
nodes VS ∈ V with corresponding sensitive attributes in S , learn
a fair GNN for fair node classification, i.e.,

f(G,Y,S)→ Ŷ (6)
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where f is the function we aim to learn and Ŷ is the set of
predicted labels for unlabeled nodes. Ŷ should maintain high
accuracy whilst satisfy fairness criteria such as statistical parity.

4.2 Privacy Protection in Fair GNN

As it is presented in Problem 1, a limited number of sensitive
attributes will be utilized to achieve fairness in GNNs.
However, if we directly apply the ground-truth sensitive
attributes for debiasing, the trained model will have a risk of
sensitive information leakage from the attacks. This privacy
concern may result in the loss of users and even cause
some legal issues. Thus, it is also crucial to protect the
privacy of users on sensitive attributes in fair GNN. One of
the most promising directions is to apply local differential
privacy to obtain private sensitive attributes that provide
strong privacy guarantees. Therefore, we first introduce the
definitions of local differential privacy and private sensitive
attributes in this subsection. We then formalize the problem
of learning fair GNN with limited and private sensitive
attributes to protect users’ privacy.

Local differential privacy (LDP) [20] guarantees that the
data aggregator does not know for certain the protected
attributes of any data point by injecting noises before it
leaves the user’s device. To preserve users’ privacy in fair
GNN, we can obtain private sensitive attributes with local
differential privacy. As a result, the fair GNN built on the
private sensitive attributes is differentially private. Formally,
the local differential privacy is defined as follows:

Definition 3 (ε-Local Differential Privacy [20]). Given ε > 0,
a randomized mechanismM satisfies ε-local differential privacy,
if for all possible pairs of users’ private data si and sj , the
following equation is met:

∀a ∈ Range(M) :
P (M(si) = a)

P (M(sj) = a)
≤ eε. (7)

where Range(M) denotes every possible output ofM.

The parameter ε is the privacy budget to tune the utility
and privacy of the model. A larger ε will lead to stronger
privacy guarantee, but weaker utility. To preserve the pri-
vacy of the sensitive information, we can obtain the private
sensitive attributes that follows local differential privacy
according to the following Lemma:

Lemma 1. To achieve ε-local differential privacy on the binary
sensitive attribute, we can randomly flip the sensitive attributes
with a probability of ρ = 1

exp (ε)+1 .

For detailed proof, please refer to Lemma 3 in [21].
According to Lemma 1, the differentially private sensitive
attributes can be obtained by injecting a certain level of
flipping noises to the sensitive attributes. In the real-world
applications, platforms can ask the users whether they
are willing to share their sensitive attributes with privacy
protection. If the answer is yes, the collection code will
automatically flip the sensitive attributes with a probability
of ρ in users’ local devices and upload the private sensitive
attributes to the platforms. If the answer is no, the sensitive
attributes will not be collected. Note that many users could
be not willing to share their sensitive attribute information,
we may still collect a limited number of private sensitive

Fig. 1: The overall framework of FairGNN.

attributes. This data collection process have been shown
on the left part of Figure 2. With the definitions of LDP
and private sensitive attributes, the problem of learning fair
GNN with private sensitive attributes can be formulated as:

Problem 2. Given a graph G = (V, E ,X), small labeled node
set VL ∈ V with labels Y , a part of nodes VS ∈ V with private
sensitive attributes Sp, and the randomlly flipping probability ρ
in Sp, learn a fair GNN for fair node classification, i.e.,

f(G,Y,Sp, ρ)→ Ŷ (8)

where f is the function we aim to learn and Ŷ is the set of
predicted labels for unlabeled nodes. Sp meets ε-local differential
privacy by randomly flipping their values with a probability of
ρ. And Ŷ should maintain high accuracy whilst satisfying the
fairness criteria such as statistical parity.

5 FAIRGNN FOR LIMITED SENSITIVE ATTRIBUTES

In this section, we give the details of the proposed FairGNN
for learning fair GNN with limited sensitive attributes
(Problem 1). An illustration of the proposed framework is
shown in Fig. 1, which is composed of a GNN classifier fG ,
a GCN based sensitive attribute estimator fE and an ad-
versary fA. The classifier fG takes G as input for node clas-
sification. The sensitive attribute estimator fE is to predict
the sensitive attributes for nodes whose sensitive attributes
are unknown, which paves us a way to adopt adversarial
learning to learn fair node representations and to regularize
the predictions of fG . Specifically, the adversary fA aims to
predict the known or estimated sensitive attributes by fE
from the node representation learned by fG ; while fG aims
to learn fair node representations that can fool the adversary
fA to make wrong predictions. We theoretically prove that
under mild conditions, such minmax game can guarantee
that learned representations are fair. In addition to make
the representations fair, we directly add a regularizer on the
predictions of fG to guarantee that fG gives fair predictions.
Next, we introduce each component in detail along with the
theoretical proof.

5.1 The GNN Classifier

The GNN classifier fG takes G as input and predicts node
labels. The proposed framework FairGNN is flexible. Any
GNNs that follow the structure of Eq.(1) can be used such as
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GCN [2] and GAT [3]. Let f (k)G denotes the operation of ag-
gregating and combining the information of node v and its
k-hop neighborhoods through k layers’ iterations in GNN
classifier fG . For a GNN with K layers, the representation
of node v of the final layer could be written as:

hv = f
(K)
G (xv,N (K)

v ), (9)

where N (K)
v represents the K-hop neighborhoods of v. To

get the ŷv , i.e., the prediction of node v, a linear classification
layer is applied to hv as:

ŷv = σ(hv ·w), (10)

where w ∈ Rd is the weights of the linear classification layer
and σ is the sigmoid function. The loss function for training
fG is given as

min
θG
LC = − 1

|VL|
∑
v∈VL

[yv log ŷv + (1− yv) log (1− ŷv)],

(11)
where |VL| denotes the size of VL, θfG represents the param-
eters of fG and yv is the groundtruth label of node v.

5.2 Sensitive Attribute Estimation
The GNN classifier fG can make biased predictions because
the learned representations of fG exhibit bias due to the
node features, graph structure and aggregation mechanism
of GNN. One way to make fG fair is to eliminate the bias
of the final layer representations hv . Recently, adversarial
debiasing has been proven to be effective in alleviating the
bias of representations [9], [27], [41], [57]. In the general pro-
cess of adversarial debiasing, an adversary is used to predict
sensitive attributes from the representations of the classifier;
while the classifier is trained to learn representations to
make the adversary unable to predict the sensitive attributes
while keep high accuracy in the classification task. Such
process requires abundant data samples with known sensitive
attributes so that we can judge if the adversary can make
accurate predictions or not.

However, in practice people are reluctant to share their
sensitive attributes, which leads to a small size of VS . Lack-
ing of data with labeled sensitive attributes would result
in poor improvement in fairness even with adversarial
debiasing. Though we have limited nodes with sensitive
attributes, i.e., small VS , generally, nodes with similar sen-
sitive attributes are more likely connected to each other,
which makes it possible to accurately predict the sensitive
attributes for nodes in V − VS using the graph G and VS .
Thus, we deploy a graph convolutional network fE : G → S
to estimate the sensitive attribute of node whose sensitive
attribute is unavailable. The large amount of estimated
sensitive attributes would greatly benefit the adversarial de-
biasing. Note that it is important to use two separate GNNs
for node label prediction and sensitive attribute prediction
because we aim to learn fair representations hv for fG , i.e.,
hv does not contain the sensitive information. The objective
function of training fE is

min
θE
LE = − 1

|VS |
∑
v∈VS

[sv log ŝv+(1−sv) log (1− ŝv)], (12)

where ŝv is the predicted sensitive attribute of node v ∈ VS
by fE and θE is the set of parameters of fE .

5.3 Adversarial Debiasing with Estimator fE
With fE , we could get the estimation of the sensitive
attributes Ŝu of the nodes u ∈ (V − VS). We use Ŝ to
denote the set of sensitive attributes by combining S and
Ŝu, i.e., Ŝ = S ∪ Ŝu. During the training process, for each
node v ∈ V , the adversary fA tries to predict v’s sensitive
attribute ŝv given the representation hv as fA(hv); while
fG aims to learn node representation hv that makes the
adversary fA unable to distinguish which sensitive group
the node v belong to. This min max game can be written as

min
θG

max
θA
LA = Eh∼p(h|ŝ=1)[log(fA(h))]

+ Eh∼p(h|ŝ=0)[log(1− fA(h))],
(13)

where h ∼ p(h|ŝ = 1) means sampling a node with
sensitive attribute as 1 from G. θA is the parameters of fA.

Theoretical Analysis. Since the size of VS is small, the es-
timation of sensitive attributes will introduce nonnegligible
noise. The noise of the sensitive attributes may influence the
adversarial debiasing. Thus, we conduct theoretical analysis
to show that sensitive attributes containing noise could help
to achieve statistical parity under mild conditions. Next, we
give the details of the proof.

Proposition 1. The global minimum of Eq.(13) is achieved if and
only if p(h|ŝ = 1) = p(h|ŝ = 0), where ŝ ∈ Ŝ and h is the final
layer representation learned by the K-layer GNN classifier fG .

Proof. According to Proposition 1. in [58], the optimal ad-
versary is f∗A(h) = p(h|ŝ=1)

p(h|ŝ=1)+p(h|ŝ=0) . Then the min max
game in Eq.(13) could be reformulated as minimizing this
function:

Cs = Eh∼p(h|ŝ=1)

[
log

p(h|ŝ = 1)

p(h|ŝ = 1) + p(h|ŝ = 0)

]
+ Eh∼p(h|ŝ=0)

[
log

p(h|ŝ = 0)

p(h|ŝ = 1) + p(h|ŝ = 0)

]
= − log(4) + 2 · JSD(p(h|ŝ = 1)||p(h|ŝ = 0).

(14)

The Jensen-Shannon divergence between two distributions
is non-negative, and become zero if the two distributions are
equal. Thus, only if p(h|ŝ = 1) = p(h|ŝ = 0), the objective
function Cs will reach the minimum, which completes our
proof.

Theorem 1. Let ŷ denote the prediction of fG . Suppose:
1) The estimated sensitive attribute ŝ and h are independent

conditioned on true sensitive attribute s, i.e., p(ŝ,h|s) =
p(ŝ|s)p(h|s);

2) p(s = 1|ŝ = 1) 6= p(s = 1|ŝ = 0).
If Eq.(13) reaches the global minimum, the GNN classifier fG will
achieve statistical parity, i.e., p(ŷ|s = 0) = p(ŷ|s = 1).

Proof. Under the assumption that p(ŝ,h|s) = p(ŝ|s)p(h|s),
we could obtain p(h|s, ŝ) = p(h|s). From Proposition 1,
we have p(h|ŝ = 1) = p(h|ŝ = 0) when the algorithm
converges, which is equivalent to

∑
s p(h, s|ŝ = 1) =∑

s p(h, s|ŝ = 0). Together with p(h|s, ŝ) = p(h|s), we
arrive at∑

s

p(h|s)p(s|ŝ = 1) =
∑
s

p(h|s)p(s|ŝ = 0) (15)
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Reordering the terms in Eq.(15), we can get

p(h|s = 1)

p(h|s = 0)
=
p(s = 0|ŝ = 1)− p(s = 0|ŝ = 0)

p(s = 1|ŝ = 0)− p(s = 1|ŝ = 1)

=
(1− p(s = 1|ŝ = 1))− (1− p(s = 1|ŝ = 0))

p(s = 1|ŝ = 0)− p(s = 1|ŝ = 1)

= 1
(16)

Eq.(16) shows that at the global minimum p(h|s = 1) =
p(h|s = 1) under the assumption p(s = 1|ŝ = 1) 6= p(s =
1|ŝ = 0). Since ŷ = σ(h · w), we could get p(ŷ|s = 1) =
p(ŷ|s = 0). Thus, the statistical parity is achieved when
Eq.(13) converges.

In our proof, two assumptions are made. For the first
assumption, since we use fE to predict the sensitive at-
tributes ŝ and fG to get the latent representation h, and
fE and fG doesn’t share any parameters, it is generally
true that ŝ is independent with the representation h, i.e.,
p(ŝ,h|s) = p(ŝ|s)p(h|s). As for the second assumption, it
will be satisfied when we have a reasonable estimator fE ,
i.e., fE doesn’t give random predictions.

5.4 Covariance Constraint
The instability of the training process of adversarial learning
is well known [59]. In adversarial debiasing, failure to
coverage may result in a classifier with discrimination. To
alleviate this issue, we add a covariance constraint [24], [25]
on the output of fG to help the model achieve fairness.
The covariance constraint has been explored in [24], [25] by
minimizing the absolute covariance between users’ sensitive
attributes and the signed distance from the users’ features
to the decision boundary for fair linear classifiers. In our
problem, only a small portion of users’ sensitive attributes
are known and the decision boundary of GNN is hard to ob-
tain. Thus, we propose to minimize the absolute covariance
between the noisy sensitive attribute ŝ ∈ Ŝ and prediction ŷ

LR = |Cov(ŝ, ŷ)| = |E[(ŝ− E(ŝ))(ŷ − E(ŷ))]|, (17)

where | · | indicates the absolute value.
Theoretical Analysis. Since LR is the absolute value of

covariance between ŷ and ŝ, LR = 0, i.e., the global mini-
mum of LR, is the prerequisite that ŷ and ŝ are independent.
Thus, we will show that LR = 0 is the prerequisite of the
statistical parity under mild assumption with the following
theorem.

Theorem 2. Suppose that p(ŝ,h|s) = p(ŝ|s)p(h|s), when fG
satisfies statistical parity, i.e. ŷ⊥s, we have ŷ is independent with
ŝ and LR = 0.

Proof. Through p(ŝ,h|s) = p(ŝ|s)p(h|s), we could get
p(h|s, ŝ) = p(h|s). Then, p(ŷ|s, ŝ) = p(ŷ|s) as ŷ = σ(h ·w).
When ŷ⊥s, the distribution p(ŷ, ŝ) would be:

p(ŷ, ŝ) =
∑
s

p(ŷ|s)p(ŝ, s) =
∑
s

p(ŷ)p(ŝ, s) = p(ŷ)p(ŝ).

(18)
Thus, ŷ is independent with ŝ when the statistical parity is
achieved. Then, we can get LR = |Cov(ŝ, ŷ)| = |E(ŝ, ŷ) −
E(ŝ)E(ŷ)| = 0.

In the proof, we assume that p(ŝ,h|s) = p(ŝ|s)p(h|s),
which is generally valid as discussed previously.

Algorithm 1 Training Algorithm of FairGNN.

Input: G = (V, E ,X), Y , S , α and β.
Output: fG , fA, and fE

1: Initialize fE by optimizing Eq.(12) w.r.t θE
2: repeat
3: Obtain the estimated sensitive attributes with fE
4: Optimize the GNN classifier parameters θG , the ad-

versary parameters θA, and the estimator parameters
θE by Eq.(19).

5: until convergence
6: return fG , fA, and fE

5.5 Final Objective Function of FairGNN

We now have fG for label prediction, fE for sensitive at-
tribute estimation, fA with adversarial debiasing to force the
node representations learned by fG are fair, and covariance
constraint to further ensure that the prediction of fG is fair.
Combining all these together, the final objective function of
FairGNN could be written as:

min
θG ,θE

max
θA
LC + LE + αLR − βLA, (19)

where θG , θE , and θA are the parameters of classifier, esti-
mator, and adversary, respectively. α and β are scalars to
control the contributions of the covariance constraint and
adversarial debiasing, respectively.

5.6 Training Algorithm of FairGNN

The training algorithm of FairGNN is presented in Al-
gorithm 1. Specifically, we first pretrain fE to ensure it
meets the second assumption in Theorem 1. Sequentially, we
optimize the whole model with Eq.(19) through the ADAM
optimizer [60]. In the training process, we replace the hard
labels in LA with soft labels, i.e., the probability produced
by fE , to stabilize the adversarial learning [61].

6 PROPOSED NT-FAIRGNN FOR LIMITED AND
PRIVATE SENSITIVE ATTRIBUTES

In this section, we introduce the details of NT-FairGNN
which can achieve both fairness and privacy by using
limited and private sensitive attributes (Problem 2). The
illustration of our proposed NT-FairGNN is shown in Fig. 2.
During the data collection phase, local differential privacy
mechanism, i.e., randomly flipping, is applied to the sen-
sitive attributes on users’ own devices. Platforms will only
be able to access the private sensitive attributes SP and the
attributed graph G to train a fair model. However, the noise
in private sensitive may largely affects the sensitive attribute
estimation in FairGNN. And according to Theorem 1, a
reasonable sensitive attribute estimator is required to help
debias in GNN. Thus, to address the challenge of limited
and private sensitive attributes, NT-FairGNN extends the
FairGNN by adapting a corrected loss LPE to the GCN-based
sensitive attribute estimator fE . Similar to FairGNN, the
estimated sensitive attributes are utilized in both adversarial
debiasing and covariance constraint to obtain fair node
classification. Next, we will first introduce how to learn a
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Fig. 2: The illustration of NT-FairGNN.

sensitive attribute estimator robust to the noise in the pri-
vate sensitive attributes. Then, the overall objective function
for discrimination elimination and the training algorithm of
NT-FairGNN are presented.

6.1 Sensitive Attribute Estimator in NT-FairGNN

For NT-FairGNN, only private sensitive attributes SP are
available for training. As discussed in Lemma 1, private
sensitive attributes are obtained by flipping the real sensi-
tive attributes with a probability of ρ to preserve privacy.
Directly optimizing the sensitive attribute estimator fE
with Eq.(12) is equivalent to learn an estimator for noisy
private sensitive attributes p(s̃|x), which will lead to poor
sensitive attribute estimation. Following [62], we correct
the loss function to reduce the effects of noise in provided
labels of sensitive attributes. Since the sensitive attributes
are randomly flipped in the LDP process, the obtained s̃ is
only related with the original value s, i.e., p(s̃|s,x) = p(s̃|s).
The cross entropy loss for a node v with private sensitive
attribute s̃ can be rewritten as:

l(p(s̃|x)) = − log p(s̃|x)

= − log
∑
j

p(s̃|s = j)p(s = j|x). (20)

From Eq. 20, we can find that if fE aims to estimate p(s|x), a
prediction correction based on the p(s̃|s) is required before
the cross entropy loss. p(s̃|s) can be represented by the noise
transition matrix T, where Tij = p(s̃ = i|s = j). Since ρ, i.e.,
the probability of flipping sensitive attribute s ∈ {0, 1}, is
known for the platforms, the noise transition matrix T can
be written as:

T =

[
1− ρ ρ
ρ 1− ρ

]
. (21)

With the correction based on Eq. 20 and the noise transition
matrix T, the objective function of optimizing the sensi-
tive attribute estimator fE with limited private sensitive
attributes SP can be formally stated as:

min
θE
LPE =

1

|SP |
∑
s̃v∈SP

[− log
∑
j

Ts̃vjfE(ŝ = j|x)], (22)

where θE denotes the learnable parameters of the sensitive
attribute estimator fE , and fE(ŝ = j|x) represents the
predicted probability from fE that the instance x belongs
to the sensitive group i.

Theoretical Analysis. The following Theorem shows
that optimizing the cross entropy loss between the corrected

Algorithm 2 Training Algorithm of NT-FairGNN.

Input: G = (V, E ,X), Y , SP , α, β and ρ.
Output: fG , fA, and fE

1: Get noise transition matrix T with Eq.(21)
2: Initialize fE by optimizing Eq.(22) w.r.t θE
3: repeat
4: Obtain the estimated sensitive attributes with fE
5: Optimize the GNN classifier parameters θG , the ad-

versary parameters θA, and the estimator parameters
θE by Eq.(24).

6: until convergence
7: return fG , fA, and fE

predictions and the noisy sensitive attributes is equivalent
to optimizing the loss between the estimations and clean
sensitive attribute distribution.

Theorem 3. Let s̃ ∈ {0, 1} denotes the private sensitive at-
tribute, and fE(ŝ = i|x) represents the predicted probability
from fE that the x belongs to sensitive group i. When T is non-
singular,

arg min
fE

E(x,s̃)∼p(x,s̃)[− log
∑
i

Ts̃ifE(ŝ = i|x)]

= arg min
fE

E(x,s)∼p(x,s)[− log fE(ŝ = s|x)],
(23)

where p(x, s̃) denotes the joint distribution of the input attribute
x and private sensitive attribute s̃ and p(x, s) denotes the joint
distribution of the input attribute x and real sensitive attribute s.

Proof. For a detailed proof, please refer to Theorem 2 in [62].
We omit the details here.

6.2 Overall Objective Function of NT-FairGNN

Similar to FairGNN, adversarial debiasing and covariance
constraint are applied to ensure the fairness of NT-FairGNN.
More specifically, they are based on sensitive attributes Ŝ
that combine estimated sensitive attributes Ŝu of nodes
u ∈ (V − VS) and private sensitive attributes SP . The
assumptions in Theorem 1 and 2 are generally true with
the sensitive attributes Ŝ = SP ∪ Ŝu in NT-FairGNN. The
flipping noise added to SP is irrelevant to x and learned
representation h, and fE and fG do not share any param-
eters. Thus, the assumption that p(ŝ,h|s) = p(ŝ|s)p(h|s) is
generally true. Since the loss correction is applied in Eq.(23)
to migrate the negative effects of noise in private sensitive
attributes, the second assumption in Theorem 1 can also
be easily met. Combining objective functions for sensitive
attribute estimation with limited and private sensitive at-
tributes, adversarial debiasing and covariance constraint,
the overall objective function can be formally written as:

min
θG ,θE

max
θA
LC + LPE + αLR − βLA, (24)

where θG , θE , and θA are the parameters of classifier, esti-
mator, and adversary, respectively. α and β are scalars to
control the contributions of the covariance constraint and
adversarial debiasing.
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TABLE 3: The comparisons of our proposed methods with the baselines using limited sensitive attributes.
Dataset Metrics GCN GAT ALFR ALFR-e Debias Debias-e FCGE FairGCN FairGAT NT-FairGNN

Pokec-z

ACC (%) 70.2 ±0.1 70.4 ±0.1 65.4 ±0.3 68.0 ±0.6 65.2 ±0.7 67.5 ±0.7 65.9 ±0.2 70.0 ±0.3 70.1 ±0.1 70.0 ±0.1
AUC (%) 77.2 ±0.1 76.7 ±0.1 71.3 ±0.3 74.0 ±0.7 71.4 ±0.6 74.2 ±0.7 71.0 ±0.2 76.7 ±0.2 76.5 ±0.2 76.7 ±0.3
∆SP (%) 9.9 ±1.1 9.1 ±0.9 2.8 ±0.5 5.8 ±0.4 1.9 ±0.6 4.7 ±1.0 3.1 ±0.5 0.9 ±0.5 0.5 ±0.3 1.0 ±0.4
∆EO (%) 9.1 ±0.6 8.4 ±0.6 1.1 ±0.4 2.8 ±0.8 1.9 ±0.4 3.0 ±1.4 1.7 ±0.6 1.7 ±0.2 0.8 ±0.3 1.6 ±0.2

Pokec-n

ACC (%) 70.5 ±0.2 70.3 ±0.1 63.1 ±0.6 66.2 ±0.5 62.6 ±0.9 65.6 ±0.8 64.8 ±0.5 70.1 ±0.2 70.0 ±0.2 70.1 ±0.2
AUC (%) 75.1 ±0.2 75.1 ±0.2 67.7 ±0.5 71.9 ±0.3 67.9 ±0.7 71.7 ±0.7 69.5 ±0.4 74.9 ±0.4 74.9 ±0.4 74.9 ±0.4
∆SP (%) 9.6 ±0.9 9.4 ±0.7 3.05 ±0.5 4.1 ±0.5 2.4 ±0.7 3.6 ±0.2 4.1 ±0.8 0.8 ±0.2 0.6 ±0.3 0.8 ±0.2
∆EO (%) 12.8 ±1.3 12.0 ±1.5 3.9 ±0.6 4.6 ±1.6 2.6 ±1.0 4.4 ±1.2 5.5 ±0.9 1.1 ±0.5 0.8 ±0.2 1.1 ±0.3

NBA

ACC (%) 71.2 ±0.5 71.9 ±1.1 64.3 ±1.3 66.0 ±0.4 63.1 ±1.1 65.6 ±2.4 66.0 ±1.5 71.1 ±1.0 71.5 ±0.8 71.1 ±1.0
AUC (%) 78.3 ±0.3 78.2 ±0.6 71.5 ±0.3 72.9 ±1.0 71.3 ±0.7 72.9 ±1.2 73.6 ±1.5 77.0 ±0.3 77.5 ±0.7 77.0 ±0.3
∆SP (%) 7.9 ±1.3 10.2 ±2.5 2.3 ±0.9 4.7 ±1.8 2.5 ±1.5 5.3 ±0.9 2.9 ±1.0 1.0 ±0.5 0.7 ±0.5 1.0 ±0.5
∆EO (%) 17.8 ±2.6 15.9 ±4.0 3.2 ±1.5 4.7 ±1.7 3.1 ±1.9 3.1 ±1.3 3.0 ±1.2 1.2 ±0.4 0.7 ±0.3 1.2 ±0.4

6.3 Training Algorithm of NT-FairGNN
The training algorithm of NT-FairGNN is presented in Al-
gorithm 2. Specifically, fE is firstly pretrained with Eq.(23)
to ensure it meets the second assumption in Theorem 1.
Then, we optimize the whole model with Eq.(24) through
the ADAM optimizer [60].

7 EXPERIMENTS

In this section, we conduct experiments to show the effec-
tiveness of the proposed models for fair node classification.
In particular, we aim to answer the following questions:
• RQ1 Can our proposed FairGNN reduce the bias of GNNs

while maintaining high accuracy given limited/private
sensitive attributes?

• RQ2 Can our proposed NT-FairGNN on private sensitive
attributes ensure the privacy and fairness of GNN and
give accurate node classification?

• RQ3 How do the sensitive attribute estimator, adversarial
loss, and covariance constraint affect our frameworks?

• RQ4 Are FairGNN and NT-FairGNN effective when dif-
ferent numbers of sensitive attributes are provided?

We use the same datasets introduced in Sec. 3.2 for all the
experiments. Next, we will begin by introducing compared
methods.

7.1 Experimental Settings
7.1.1 Compared Methods
We compare our proposed framework with GCN, GAT, and
the following representative and state-of-the-art methods
for fair classification and fair graph embedding learning:
• ALFR [41]: This is a pre-processing method. A discrimina-

tor is applied to remove the sensitive information in the
representations produced by a MLP-based autoencoder.
Then, linear classifier is trained on the debiased represen-
tations.

• ALFR-e: To utilize the graph structure information, ALFR-
e concatenates the graph embeddings learned by deep-
walk [63] with the user features in the ALFR.

• Debias [26]: This is an in-processing fair classification
method. It directly applies a discriminator on the esti-
mated probability of classifier η : x → R. It would
make the probability distribution p(η(x)|s = 0) closer to
p(η(x)|s = 1).

• Debias-e: Similar to the ALFR-e, we also add the deep-
walk embeddings to the features used in Debias.

• FCGE [44]: FCGE is proposed to learn fair node em-
beddings in graph without node features through edge

prediction. The sensitive information in the embeddings
is filtered by discriminators.

• NTFC [21]: This method is proposed to learn a fair
classifier with private sensitive attributes on i.i.d data.
A constraint of fairness based on the private sensitive
attributes is applied to achieve fairness and protect the
users’ privacy.

ALFR and ALFR-e are trained with features of all the
users V , labels of VL, and the sensitive attributes of VS for
fair classification. Debis and Debias-e require the sensitive
attributes of labeled nodes, which is on contrary with our
setting that VL could have no overlap with VS . Thus, we use
the estimated labels of VS , features of VL, and labels of VL
to train Debias and Debias-e. FCGE utilizes G, labels of VL,
and sensitive attributes of VS . Note that NTFC is proposed
for private sensitive attributes, thus it is only compared with
NT-FairGNN.

7.1.2 Implementation Details
For FairGNN, we deploy a one hidden layer GCN for fE .
The hidden dimension is set as 128. We use a linear classifier
for fA. To verify that our framework is useful for various
GNNs, we adopt both GCN and GAT as the backbone of
the FairGNN classifier fG , which are named as FairGCN
and FairGAT. In FairGCN, the GCN classifier contains
one hidden layer with dimension 128. The GAT classifier
in FairGAT also contains two layers in total. We set the
number of heads as 1. The dimensions of the GAT classifiers’
hidden layer for Pokec-z, Pokec-n and NBA are 64, 64 and
32, respectively. For NT-FairGNN, we apply GCN as the
backbone of sensitive attribute estimation and classifier.
The hidden dimiension is set as 128. For hyperparameter
selection, we vary α and β among {0.0001, 0.001, 0.1, 1}
and {1, 2, 5, 10, 20, 50, 100}, respectively based on the per-
formance on validation set.

7.2 Performance of FairGNN

To answer RQ1, we evaluate our proposed FairGNN in
terms of fairness and classification performance. ∆SP and
∆EO are used to show the discrimination level, which are
introduced in Section 3.4. The smaller ∆SP and ∆EO are,
the more fair the classifier is. Accuracy (ACC) and ROC
AUC score are used to evaluate the classification perfor-
mance. The size of VL and VS are set as 500 and 200,
respectively. Apart from FairGCN and FairGAT, we also
compare the results of NT-FairGNN given limited sensitive
attributes with the baselines. For all the models, we tune
the hyperparameters on the training set via cross validation
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(a) ∆SP (b) ∆SP (c) ROC AUC (d) Accuracy
Fig. 3: Performance of NT-FairGNN on Pokec-z with sensitive attributes containing different levels of noises.

(a) ∆SP (b) ∆SP (c) ROC AUC (d) Accuracy
Fig. 4: Performance of NT-FairGNN on Pokec-n with sensitive attributes containing different levels of noises.

(a) ∆SP (b) ∆SP (c) ROC AUC (d) Accuracy
Fig. 5: Performance of NT-FairGNN on NBA with sensitive attributes containing different levels of noises.

following the description in Sec. 7.1.2. More details about
hyperparameter selection will be discussed in Sec. 7.6. All
the experiments are conducted 5 times. The mean and
standard deviations for all the models on the three datasets
are reported in Table 3. From the table, we observe:
• Compared with GCN and GAT, the general fair classifi-

cation methods and graph embeddings learning method
show poor performance in classification even with the
help of graph information, while FairGCN and FairGAT
perform very close to the based GNNs. This suggests the
necessity of investigating fair classification algorithms on
GNNs for accurate predictions;

• Under the condition of limited sensitive information,
baselines show obvious bias and the ones utilizing graph
information are even worse. On the contrary, our pro-
posed models obtain ∆SP and ∆EO that are close to
0, which indicates that the discrimination is basically
eliminated; and

• FairGAT is slightly better than FairGCN in Fairness. This
is reasonable because the learnable edge coefficients in
GAT could be helpful to reduce the weights of the edges
that bring bias.

• NT-FairGNN shows similar results to FairGCN. This is be-
cause NT-FairGNN will be equivalent to FairGNN when
the noise rate ρ is 0.

These observations demonstrate the effectiveness of our pro-
posed frameworks in making fair and accurate predictions.

7.3 Performance of NT-FairGNN
To answer RQ2, we compare NT-FairGNN with the base-
lines on limited private sensitive attributes for different
levels of privacy. More specifically, we vary the noise rate
ρ as {0%, 10%, 20%, 30%, 40%} to obtain private sensitive
attributes that generated for different levels of privacy pro-
tection. The size of labeled nodes VL is set as 500, 500,
and 100 for Pokec-z, Pokec-n, and NBA. Since the privacy
protection will encourage more users share their sensitive
attributes for fair node classification, we increase the sizes
of VS to 1000, 1000, and 100 in Pokec-z, Pokec-n and NBA
respectively. The most effective baselines in Table 3 are
compared with NT-FairGNN. We also compare our NT-
FairGNN with NTC which is designed for private sensitive
attributes. Each experiments are conducted 5 times. The
results are shown in Fig. 3-5. From the figures, we have the
following observations:
• When the noise rate of limited private sensitive attributes

is small, both NT-FairGNN and FairGNN perform sig-
nificantly better than the baselines in terms of fairness.
This is because plenty of estimated sensitive attributes can
be obtained in FairGNN and NT-FairGNN to address the
problem of lacking sensitive attributes.

• As the noise rate increases in the private sensitive at-
tributes, the performance of baselines and FairGCN in
fairness and classification will drop, which is as expected.
Though NT-FairGNN also drops, it still can obtain ∆SP
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and ∆EO smaller than 2%. The classification performance
of NT-FairGNN is also more stable. This shows the effec-
tiveness of NT-FairGNN in learning an accurate fair graph
neural network with private sensitive attributes.

7.4 Ablation Study

To answer RQ3, we conduct ablation studies to understand
the impacts of fE , adversarial loss, and covariance con-
straint on the proposed frameworks.

7.4.1 Ablation Study on FairGNN

In our proposed FairGNN, a GCN estimator is deployed
to predict sensitive attributes for adversarial debiasing. To
show the importance of the GCN estimator, we analyze it
from two aspects. Firstly, to demonstrate the effectiveness of
the noisy sensitive attributes, we eliminate the estimator and
only use the provided sensitive attributes S to get a variant
denoted as FairGNN\E. Secondly, to investigate how a
weaker estimator would influence the fair classification, we
train a variant FairGNNMLP by using MLP as the estimator.
To demonstrate the effects of the adversarial loss and co-
variance constraint, we train two variants of FairGNN, i.e.,
FairGNN\A and FairGNN\C, where FairGNN\A means
FairGNN without the adversarial loss, and FairGNN\C
means FiarGNN without covariance constraint. Hyperpa-
rameters of these variants are determined by cross valida-
tion with gird search which is mentioned in Sec. 7.1.2. For
each variant, the experiments are conducted 5 times. The
average performance of fairness in terms of ∆SP and node
classificaiton in terms of AUC on Pockec-z are presented in
Fig. 6, respectively. We only show the results on Pockec-z
as we have similar observations on the other datasets. From
the figures, we make the following observations:

• The ∆SP score of FairGNN\E is much larger than that
of FairGNN. which is because the provided sensitive
attributes are inadequate. This shows that fE plays an
important role in FairGNN;

• The performance of sensitive attribute prediction in terms
of AUC for MLP estimator is 0.69, which is much
lower than that of GCN estimator, which is 0.8. Though
FairGNNMLP adopts a much weaker estimator than
FairGNN, the performance in terms of fairness is slightly
worse than FairGNN. This aligns with our theoretical
analysis that fE doesn’t need to be very accurate. How-
ever, the differences indicate that too much noise in sensi-
tive attributes may still affect the fairness;

• The ∆SP scores for both FairGNN\C and FairGNN\A are
much smaller than that of GNNs in Figure 6, which shows
that both covariance constraint and adversarial debiasing
can improve fairness; and

• The ∆SP scores for both FairGNN\C and FairGNN\A are
much larger than that of FairGNN, which implies that us-
ing both covariance constraint and adversarial debiasing
can achieve better fairness. This is because they regularize
the GNN from two different perspectives, i.e., adversarial
debiasing regularizes on the node representations while
covariance cosntraint is directly on the predictions for fair
classification.

(a) ∆SP (b) ROC AUC

Fig. 6: Comparisons between FairGNN and its variants.
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Fig. 7: Comparisons between NT-FairGNN and its variants
on Pokec-z with noisy sensitive attributes.

7.4.2 Ablation Study on NT-FairGNN

To reduce the negative effects of the noise in private sensi-
tive attributes, the loss correction is applied to the sensitive
attribute estimator in NT-FairGNN. To demonstrates the ef-
fectiveness of the loss correction, we compare NT-FairGNN
with FairGCN which directly treats private sensitive at-
tributes as the ground truth. We also train two variants of
NT-FairGNN, i.e., NT-FairGNN\A and NT-FairGNN\C, to
show the effectiveness of adversarial debiasing and covari-
ance constraint in eliminating discrimination in GNN. The
hyperparameter selection is based on the process described
in Sec. 7.1.2. We only report the results on Pokec-z because
similar observations are obtained in other datasets. The
sizes of VL and VS in Pokec-z are set as 500 and 1000,
respectively. The noise rate of private sensitive attributes is
set as 20%.The average results of 5 runs are shown in Fig. 7.
From the figure, we have the following observations:

• With private sensitive attributes which contains random
flipping noise for privacy protection, NT-FairGNN per-
forms better than FairGNN in fairness. This is because
FairGNN directly applies the private sensitive attributes
to train the sensitive attribute estimator, which may result
in a poor estimator that cannot meet the requirement of
debiasing. On the contrary, loss correction is applied in
NT-FairGNN to learn a useful sensitive attribute estimator
with private sensitive attributes. Thus, NT-FairGNN can
achieve better fairness with private sensitive attributes;

• The discrimination scores of NT-FairGNN\C and NT-
FairNN\A are significantly larger than that of NT-
FairGNN, which implies that both convariance constraint
and adversarial debiasing are effective in eliminating
the discrimination with the estimated sensitive attributes.
This also suggests that combining the convariance con-
straint and adversarial debiasing together can lead to a
more fair graph neural network.
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7.5 Impacts of Sizes of Sensitive Attributes

To answer RQ4, we study the impacts of the sizes of VS on
FairGNN and NT-FairGNN in this section.

7.5.1 Impacts of |VS | to FairGNN

We select the GAT as the backbone of FairGNN. The hyper-
parameters are selected as the description in Sec.7.1.2. We
vary |VS | as {200, 500, 1500, 2000, 2500}. Each experiment
is conducted 5 times and the average results on Pokec-z
with comparison to FairGAT\E and ALFR-e are shown in
Fig. 8. From the figure, we observe that:
• Generally, both FairGAT\E and ALFR-e have high dis-

crimination scores when |VS | is small. They need plenty of
data with sensitive attributes to become effective. FairGAT
could get very low ∆SP even when |VS | is as small as
200. This implies that FairGAT is insensitive to the size of
data with sensitive attributes, which is because we have
fE to estimate the sensitive attributes. Though extremely
small |VS | would lead to a weak fE , we still have similar
∆SP score as that when VS is large. This verifies our
theoretical analysis that we can achieve good fairness with
a reasonable fE ;

• FairGAT\E and ALFR-e decrease slightly in classification
performance with the increasing of the size of VS , which
is because more data with sensitive attribute would lead
to a stricter regularization. In the contrary, FairGAT keeps
high classification performance and even perform slightly
better with more sensitive attributes. This is because the
size of sensitive attributes Ŝ used for training FairGAT are
fixed to the size of V , and less noise in the estimation of
the sensitive attributes is helpful to better learn represen-
tations for classification.

7.5.2 Impacts of |VS | to NT-FairGNN

Similarly, we alter the size of private sensitive attributes
|VS | as {200, 500, 1000, 1500, 2000, 2500}. The noise rate of
private sensitive attribute is set as 20%. Since we have
similar observations on other datasets, we only show the
comparisons between NT-FairGNN, FairGCN and NTFC
on Pokec-z. The average results of 5 runs are reported in
Figure 9. We can observe that:
• When the size of private sensitive attributes is small,

NT-FairGNN outperforms NTFC by a large margin in
fairness. This is because NT-FairGNN learns a robust fE
with limited private sensitive attributes to address the
challenge of lacking sensitive attributes;

• With the increasing of |VS |, the gap between NT-FairGNN
and FairGCN decreases. This is because with the increase
of |V|S , we will have plenty of private sensitive attributes
to regularize the GNN. And according to Theorem 1,
discrimination in GNNs can be eliminated with adequate
noisy/private sensitive attributes.

7.6 Parameter Sensitivity Analysis

7.6.1 Parameter Sensitivity of FairGNN

There are two important hyperparameters in our proposed
frameworks, .i.e., α controlling the influence of the ad-
versary to the GNN classifier, while β controlling the

(a) ∆SP (b) ROC AUC
Fig. 8: Impacts of the size of VS to FairGNN.

(a) Fairness Scores (b) Classification Scores
Fig. 9: Impacts of the size of VS to NT-FairGNN.

contribution of the covariance constraint to ensure fair-
ness. To investigate the parameter sensitivity and find
the ranges that achieve high accuracy with low discrim-
ination score, we train FairGAT models on Pokec-z with
various hyperparameters. More specifically, we alter the
values of α and β among {0.0001, 0.001, 0.01, 0.1, 1} and
{1, 2, 5, 10, 20, 50, 100}. The results are presented in Fig. 10.
From Fig. 10 (b), we can find that when α ≤ 0.01 and
β ≤ 20 the classification performance is almost unaffected.
Once α and β are too large, the classifier’s performance
will decay rapidly. The impacts of the hyperparameters to
the discrimination score are presented in Fig. 10 (a). When
we increase the value of α, ∆SP will firstly decrease as
expected. Then, it would increase when the value of α is
too large. Because it would be difficult to optimize the GNN
classifier to the global minimum when the contribution of
the adversary is extremely high. As for β, the discrimination
score would consistently reduce when we increase its value.
Combining the two Fig.s, we could determine that when
α ∈ [0.001, 0.01] and β ∈ [5, 20], the GNN classifier achieves
fairness and maintains high node classification accuracy.

7.6.2 Parameter Sensitivity of NT-FairGNN

Similar to the parameter sensitivity analysis of FairGNN,
we train NT-FairGNN on Pokec-z with various hyperpa-
rameters to find the ranges that achieve high accuracy with
low discrimination score. The values of α and β are varied
as {0.0001, 0.001, 0.01, 0.1, 1} and {1, 2, 5, 10, 20, 50, 100}.
The noise rates ρ are set as 0.2 for both datasets. The
results are presented in Fig. 11. We can observe that (i)
With the increasing of α and β, the performance of NT-
FairGNN in fairness will firstly increase, while keeping
high classification accuracy. But if the α and β is too large,
the performance of NT-FairGNN will drop in both fairness
and classification. (ii) Similar to FairGNN, NT-FairGNN
achieves fairness and maintains high node classification
accuracy when α ∈ [0.001, 0.01] and β ∈ [5, 20], which eases
the hyperparameter tuning.
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(a) ∆SP (%) (b) ROC AUC (%)

Fig. 10: Parameter sensitivity analysis of FairGNN on Pokec-
z with clean sensitive attributes.

(a) ∆SP (%) (b) ROC AUC (%)

Fig. 11: Parameter sensitivity analysis of NT-FairGNN on
Pokec-n with noisy sensitive attributes.

8 CONCLUSION AND FUTURE WORK

In this paper, we study a novel problem of fair GNN
learning with limited and private sensitive information.
We empirically demonstrate that GNNs exhibit severe bias.
We propose a novel and flexible framework FairGNN for
fair node classification with limited sensitive attributes.
FairGNN adopts a sensitive attribute estimator to alleviate
the issue of lacking sensitive attribute information. With the
estimated sensitive attributes, FairGNN designs adversar-
ial debiasing and covariance constraint to regularize the
GNN to have fair node representations and predictions,
respectively. Furthermore, NT-GNN is proposed to extend
FairGNN to handle limited and private sensitive attributes
to simultaneously achieve fairness and protect the privacy
of users. Theoretical analysis proves that the proposed
FairGNN and NT-FairGNN can eliminate the discrimination
in GNNs under the corresponding settings of sensitive at-
tributes. Experiment results on real-world datasets demon-
strate the effectiveness of the proposed frameworks in terms
of both fairness and classification performance.

There are several interesting directions which need fur-
ther investigation. First, the experiments show that the
edges are possible to bring bias. Thus, we will also explore
methods which add/delete links in graphs to improve the
fairness and classification performance of FairGNN. Second,
the privacy budget is uniform to all users by setting a
fixed sensitive attribute flipping noise rate in NT-FairGNN.
However, the users’ sensitivity to the privacy can be various.
We may need to add different levels of flipping noises to set
customized privacy budgets for users. Thus, we will extend
NT-FairGNN to deal with limited and private sensitive
attributes that contain various levels of noises.
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