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graph-structured data across domains, my overarching research goal is to utilize AI in a re-
sponsible manner to serve humanity. Guided by this principle, as the Fig. 1 shows, my contributions

and future plans focus on trustworthy graph learning and Al for real-world applications.

Trustworthy Graph Learning. Graph Neural Networks (GNNs) have emerged as powerful methods
for modeling graph-structured data. Despite their capabilities, GNNs have been found to exhibit various
trustworthiness issues. These include private information leakage, vulnerability to adversarial attacks,
classification biases, and lack of explainability. This largely hinders the adoption of GNNs in high-stake
applications. Therefore, my research mainly focuses on trustworthy graph neural networks to ensure the
allure of Al can be enjoyed without concerns. I have already conducted foundation research in graph
learning algorithms for each aspect of the trustworthiness, resulting a number of high impact publications
in top-tier conferences (e.g., KDD, WWW, ICLR, NeurIPS, WSDM, and CIKM). In the future, I plan
to consolidate these into a unified framework of trustworthy graph neural networks to facilitate their
deployment in high-stake applications. I also aim to extend the trustworthiness to the future foundation
model on graph-structured data. And these investigations in trustworthy graph learning will promote the
graph-augmented Al for real-world applications, which is the other research direction of mine.

Graph-Augmented Al for Real-World Applications. In many real-world application scenarios, we often
encounter relational data that can provide pivotal information for the target task. For instance, fake news
detection can benefit from the news propagation network. The ability of GNNs in encoding relational
information paves the way to enhance Al on these applications. Therefore, I am also interested in developing
graph-augmented Al for real-world challenges. Specifically, some influential works for social good such as
fake news detection and power grid anomaly detection have been investigated. In scientific problems, graph-
structured data such as molecular and protein also can encode vital knowledge. In the coming years, I aim
to broaden the scope of GNN applications in scientific problems. I plan to achieve this by collaborating with
researchers from diverse domains. This includes computer science subfields such as system and network,
as well as other scientific disciplines like biology, chemistry, and physics. One promising technical path to
achieve the aforementioned goal is building graph foundation models for domains such as network anomaly
detection and protein analysis. In addition, the trustworthiness will be considered in the future exploration.

Research Contributions

Foundation Research in Trustworthy Graph Learning From the computational perspective, the
trustworthiness encompasses four main dimensions: fairness [7, 16, 15|, privacy [9, 3|, robustness [1, 3, 4,
5, 14], and ezplainability [8, 10, 11]. Next, I outline my contributions in each aspect.

o Fairness: Many applications of graph neural networks ( e.g. credit estimation with financial network)
require the model predictions to be fair for different individuals and demographic groups. However,
my analysis in [7] first verifies that the societal bias in graph-structured data can be magnified with
the message-passing mechanism of GNNs, resulting severe discrimination towards protected sensitive
attributes such as races and genders. To address discrimination in graph learning, I constructed three
graphs containing sensitive attributes which have become widely recognized benchmarks for fair graph
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learning [7]. In addition, I developed FairGNN [7] which guarantees group fairness with adversarial
debiasing and fairness constraints. Acknowledging the difficulty of collecting users’ sensitive attribute
information, FairGNN proposes to utilize the estimated sensitive attributes to constrain the GNN models
for fairness. The effectiveness of FairGNN is demonstrated by thoroughly theoretical analysis and
experiments. Following this, I also collaborated with fellow researchers to explore fair model training
without sensitive attributes [16, 15].

e Privacy: It has been proven that AI models have a risk of leaking private information of training
data. To protect the privacy of sensitive attributes, FairGNN was extended to comply with local
differential privacy which provides strong theoretical privacy guarantee [9]. Specifically, differentially
private sensitive attributes are produced and collected in users’ own devices by randomly flipping their
true sensitive attributes [9]. This approach, in theory, safeguards against the disclosure of sensitive
information from GNN models. Furthermore, the overfitting of GNNs can reveal the membership of
training samples. Therefore, I established a graph information bottleneck (GIB) framework that can
protect the membership privacy [3]. The proposed graph information bottleneck can constrain the
mutual information between node representations and labels on the training set, which narrows the gap
between training and test sets to protect the membership privacy.

¢ Robustness: Various types of noises and adversarial attacks can significantly degrade the performance
of GNNs. To address these challenges, I firstly developed a novel NRGNN framework [1] that is resistant
to different types of noises in annotations. Secondly, I designed approaches that can eliminate structural
noises and malicious links in graphs [3, 4]. Finally, I further investigated the vulnerability of GNNs
under the backdoor attack [5], which is a new form of attack method. The proposed approach can
unnoticeablely backdoor models trained on large-scale graphs with over 100K nodes. Our results indicate
that GNNs (even many existing robust GNNs) can be easily injected backdoors. And we are going to
investigate how to defend against this backdoor attack in the future.

« Explainability: Providing explanations from models enhances trust in the predictions made by Al
systems. The extracted explanations can also facilitate the discovery of knowledge from data. However,
initial efforts to interpret GNN predictions largely rely on auxiliary post-hoc explainers, which could
misrepresent the true inner working mechanism of the target GNN. Therefore, I have studied self-
explainable GNNs that can simultaneously give accurate predictions and corresponding explanations [8,
10]. The self-explainable GNN in [8] will identify K-nearest labeled samples with interpretable similarity
metric for both explaining and predicting. Our work in [10] introduces a prototype-based self-explainable
GNN that learns prototype graphs capturing representative patterns of the corresponding class.

Graph-Augmented Al for Social Good. To promote social good with GNNs, I have conducted research

in fake health news detection with social networks [6] and power grid anomaly detection [2].

o Fake Health News Detection: Nowadays, Internet has been a primary source of attaining health
information. However, the propagation of fake health news over the Internet has become a severe threat
to public health. Motivated by this, I constructed and released the first comprehensive fake health
news dataset repository, which includes thousands of labeled health news with explanations and rich
social contexts [6]. The extracted explanations can guide the training of explainable fake health news
identification. Over 500K related tweets and 200K engaged user profiles are collected to facilitate the
fake health news detection with social context. Released in 2019, this repository enabled research on
GNN-based fake health news detection using social network information, which was particularly valuable
during the COVID pandemic.

e Power Grid Anomaly Detection: In spatial-temporal data such as power grid, time series at nearby
locations are often correlated and their behavior may be causal under cascading effects. To model such
interdependencies, I developed a novel graph-augmented anomaly detector. This framework learns a
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Bayesian Network to model relationship of nodes in power grid graph, which facilitates the identification
of anomalies, such as power failures.

Future Research Directions

My short term goal is to explore frontiers of trustworthy GNNs. In the longer term, I plan to incorporate
the trustworthy model for science problems and build graph foundation models for critical domains.

Unified Framework for Trustworthy GNNs. High-stake applications, such as financial analysis, often
require multiple dimensions of trustworthiness. However, existing research in trustworthy GNNs mainly
focuses on a single dimension of trustworthiness. Methods designed for distinct trustworthy aspects can be
conflict with each other in model design, resulting in poor performance. Consequently, a unified framework
for trustworthy GNNs is necessary. I have already conducted a preliminary work in unifying adversarial
robustness and membership privacy within the graph information bottleneck (GIB) framework [3]. As
the principle of GIB is to extract minimal sufficient information, it is promising to further utilize GIB
to remove sensitive attribute information for fairness. The extracted minimal sufficient information can
be analyzed to interpret the model’s decision-making processes, promoting the explainability of graph
learning. Another potential direction is to enhance the robustness and fairness with model explanations.
I have already worked on self-explainable GNNs [8, 10]. Moving forward, my aspiration is to align the
self-explanations generated by models with the rationale provided by humans when making decisions that
are both robust and unbiased. To achieve this, research in data construction, techniques of alignment, and
self-explainable frameworks for various applications would be investigated.

Trustworthy Model for Science. Graph-structured data is also very pervasive in scientific research such
as the studies on molecules, proteins, and gene graphs. Capturing useful information from such complex
topology is a crucial challenge. For instance, the 3D topology of a drug molecule plays a vital role in drug
analysis. Hence, adopting trustworthy graph models to process these data could bring breakthroughs to
scientific problems in critical areas. I have conducted works in explaining the predictions on molecule graphs
with prototype molecules which capture key patterns of molecules with the target property [10]. These
explanations could assist researchers in designing chemical compounds. In addition, an explainable GNN
that aligns biomedical prior knowledge with the model logic is developed. The preprint is in submission.
In the future, I plan to further collaborate with researchers in biomedical, chemistry, physics, and other
fields. Leveraging the intersection of these disciplines with my expertise in trustworthy GNNs, I envision
significant contributions to pivotal areas such as drug discovery and personalized medicine.

Domain-Specific Graph Foundation Model Learning. Recent breakthroughs in large language mod-
els demonstrate the power of large foundation models trained on massive data. Foundation models trained
on large-scale image/text data can consistently enhance the performance. Inspired by this success, learning
graph foundation models on vast graph data is promising to attain a level of expertise ready for the deploy-
ment in production environments. However, different from images and text, graph-structured data comes
from various domains which exhibit distinct distributions. The knowledge learned from these distinct
distributions is often non-transferable. For example, a traffic network would not be able to benefit from
learning about proteins. Therefore, graph foundation models should be constructed in a domain-specific
way. In particular, there are three major research questions to be answered for domain-specific graph
foundation model learning.

o What architectures should the graph foundation model adopt for different domains? Given that data
distributions vary across domains, the key challenge of this research question would be developing
specialized architectures to capture essential topological patterns. I already have designs of GNN for
heterophilic graphs [12] and spatial-temporal data such as energy network [2, 13]. These preliminary
works can guide me to complete the architecture with large size, enabling fully leverage of the massive
data in corresponding domains.Apart from the aforementioned areas, my focus will broaden to cover
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the domain-specialized neural architectures for modeling the 3D topology of molecules and proteins.

o What tasks should we deploy in training to encode domain knowledge in the graph foundation model?
I have already done several works can be referred for the investigation of tasks for graph foundation
model training. Firstly, I have investigated the contrastive learning task on graph-structured data [8],
which is a general pre-training task. A generative task is employed in [2] to train a model on around
500 GB power grid data for anomaly detection. With this experience, I plan to explore pre-training
tasks for graph foundation models for more critical domains.

e How to ensure the trustworthiness of the graph foundation model? Given the wide applicability of
foundational models across tasks, ensuring their trustworthiness is paramount. For the robustness
aspect, I've already contributed to certifying robustness in graph contrastive learning as a preliminary
work [14]. In the future, I plan to thoroughly investigate the four dimensions of trustworthiness, i.e.,
fairness, robustness, privacy and explainability, regarding graph foundation models.
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